avogy-patents-header_

 

Innovation is at the core of everything we do and our patents cover key features and functionality that are at the heart of today’s power electronics systems.

Semiconductors

PATENT NUMBER: 9093395ISSUED

ABSTRACT
A diode includes a substrate characterized by a first dislocation density and a first conductivity type, a first contact coupled to the substrate, and a masking layer having a predetermined thickness and coupled to the semiconductor substrate. The masking layer comprises a plurality of continuous sections and a plurality of openings exposing the substrate and disposed between the continuous sections. The diode also includes an epitaxial layer greater than 5 .mu.m thick coupled to the substrate and the masking layer. The epitaxial layer comprises a first set of regions overlying the plurality of openings and characterized by a second dislocation density and a second set of regions overlying the set of continuous sections and characterized by a third dislocation density less than the first dislocation density and the second dislocation density. The diode further includes a second contact coupled to the epitaxial layer.

PATENT NUMBER: 9093284ISSUED

ABSTRACT
A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial layer of the first conductivity type coupled to the first surface of the III-nitride substrate, and a first metallic structure electrically coupled to the second surface of the III-nitride substrate. The semiconductor structure further includes an AlGaN epitaxial layer coupled to the III-nitride epitaxial layer of the first conductivity type, and a III-nitride epitaxial structure of a second conductivity type coupled to the AlGaN epitaxial layer. The III-nitride epitaxial structure comprises at least one edge termination structure.

PATENT NUMBER: 9059199ISSUED

ABSTRACT
A vertical JFET includes a GaN substrate comprising a drain of the JFET and a plurality of patterned epitaxial layers coupled to the GaN substrate. A distal epitaxial layer comprises a first part of a source channel and adjacent patterned epitaxial layers are separated by a gap having a predetermined distance. The vertical JFET also includes a plurality of regrown epitaxial layers coupled to the distal epitaxial layer and disposed in at least a portion of the gap. A proximal regrown epitaxial layer comprises a second part of the source channel. The vertical JFET further includes a source contact passing through portions of a distal regrown epitaxial layer and in electrical contact with the source channel, a gate contact in electrical contact with a distal regrown epitaxial layer, and a drain contact in electrical contact with the GaN substrate.

PATENT NUMBER: 9029210ISSUED

ABSTRACT
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.

PATENT NUMBER: 9006800ISSUED

ABSTRACT
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.

PATENT NUMBER: 8981432ISSUED

ABSTRACT
A method for fabricating an electronic device includes providing an engineered substrate structure comprising a III-nitride seed layer, forming GaN-based functional layers coupled to the III-nitride seed layer, and forming a first electrode structure electrically coupled to at least a portion of the GaN-based functional layers. The method also includes joining a carrier substrate opposing the GaN-based functional layers and removing at least a portion of the engineered substrate structure. The method further includes forming a second electrode structure electrically coupled to at least another portion of the GaN-based functional layers and removing the carrier substrate.

PATENT NUMBER: 8969994ISSUED

ABSTRACT
An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.

PATENT NUMBER: 8969926ISSUED

ABSTRACT
An embodiment of a vertical power device includes a III-nitride substrate, a drift region coupled to the III-nitride substrate and comprising a III-nitride material of a first conductivity type, and a channel region coupled to the drift region and comprising a III-nitride material of the first conductivity type. The vertical power device also includes a source region coupled to the channel region and comprising a III-nitride material of the first conductivity type, and a gate region coupled to the channel region. The gate region includes a III-nitride material of a second conductivity type. The vertical power device further includes a source-coupled region coupled to the drift region and electrically connected with the source region. The source-coupled region includes a III-nitride material of the second conductivity type.

PATENT NUMBER: 8969912ISSUED

ABSTRACT
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction, and the channel region extends along at least a portion of the second surface of the gate region.

PATENT NUMBER: 8969180ISSUED

ABSTRACT
A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.

PATENT NUMBER: 8946788ISSUED

ABSTRACT
A method of growing a III-nitride-based epitaxial structure includes providing a substrate in an epitaxial growth reactor and heating the substrate to a predetermined temperature. The method also includes flowing a gallium-containing gas into the epitaxial growth reactor and flowing a nitrogen-containing gas into the epitaxial growth reactor. The method further includes flowing a gettering gas into the epitaxial growth reactor. The predetermined temperature is greater than 1000.degree. C.

PATENT NUMBER: 8946725ISSUED

ABSTRACT
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.

PATENT NUMBER: 8941117ISSUED

ABSTRACT
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.

PATENT NUMBER: 8937317ISSUED

ABSTRACT
An electronic package includes a leadframe, a plurality of pins, a gallium-nitride (GaN) transistor, and a GaN diode. The GaN transistor includes a drain region, a drift region, a source region, and a gate region; the drain region includes a GaN substrate and a drain contact, the drift region includes a first GaN epitaxial layer coupled to the GaN substrate, the source region includes a source contact and is separated from the GaN substrate by the drift region, and the gate region includes a second GaN epitaxial layer and a gate contact. The GaN diode includes an anode region and a cathode region, the cathode region including the GaN substrate and a cathode contact, and the anode region including a third GaN epitaxial layer coupled to the GaN substrate and an anode contact. The drain contact and the anode contact are electrically connected to the leadframe.

PATENT NUMBER: 8933532ISSUED

ABSTRACT
A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.

PATENT NUMBER: 8927999ISSUED

ABSTRACT
An edge terminated semiconductor device is described including a GaN substrate; a doped GaN epitaxial layer grown on the GaN substrate including an ion-implanted insulation region, wherein the ion-implanted region has a resistivity that is at least 90% of maximum resistivity and a conductive layer, such as a Schottky metal layer, disposed over the GaN epitaxial layer, wherein the conductive layer overlaps a portion of the ion-implanted region. A Schottky diode is prepared using the Schottky contact structure.

PATENT NUMBER: 8916871ISSUED

ABSTRACT
An embodiment of a semiconductor device includes a gallium nitride (GaN) substrate having a first surface and a second surface. The second surface is substantially opposite the first surface, at least one device layer is coupled to the first surface, and a backside metal is coupled to the second surface. A top metal stack is coupled to the at least one device layer. The top metal stack includes a contact metal coupled to a surface of the at least one device layer, a protection layer coupled to the contact metal, a diffusion barrier coupled to the protection layer, and a pad metal coupled to the diffusion barrier. The semiconductor device is configured to conduct electricity between the top metal stack and the backside metal.

PATENT NUMBER: 8866148ISSUED

ABSTRACT
A method for fabricating a vertical GaN power device includes providing a first GaN material having a first conductivity type and forming a second GaN material having a second conductivity type and coupled to the first GaN material to create a junction. The method further includes implanting ions through the second GaN material and into a first portion of the first GaN material to increase a doping concentration of the first conductivity type. The first portion of the junction is characterized by a reduced breakdown voltage relative to a breakdown voltage of a second portion of the junction.

PATENT NUMBER: 8866147ISSUED

ABSTRACT
A semiconductor structure includes a III-nitride substrate and a drift region coupled to the III-nitride substrate along a growth direction. The semiconductor substrate also includes a channel region coupled to the drift region. The channel region is defined by a channel sidewall disposed substantially along the growth direction. The semiconductor substrate further includes a gate region disposed laterally with respect to the channel region.

PATENT NUMBER: 8853063ISSUED

ABSTRACT
A method of growing an n-type III-nitride-based epitaxial layer includes providing a substrate in an epitaxial growth reactor, forming a masking material coupled to a portion of a surface of the substrate, and flowing a first gas into the epitaxial growth reactor. The first gas includes a group III element and carbon. The method further comprises flowing a second gas into the epitaxial growth reactor. The second gas includes a group V element, and a molar ratio of the group V element to the group III element is at least 5,000. The method also includes growing the n-type III-nitride-based epitaxial layer.

PATENT NUMBER: 8846482ISSUED

ABSTRACT
A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.

PATENT NUMBER: 8841708ISSUED

ABSTRACT
A semiconductor device includes a III-nitride substrate and a channel structure coupled to the III-nitride substrate. The channel structure comprises a first III-nitride epitaxial material and is characterized by one or more channel sidewalls. The semiconductor device also includes a source region coupled to the channel structure. The source region comprises a second III-nitride epitaxial material. The semiconductor device further includes a III-nitride gate structure coupled to the one or more channel sidewalls, a gate metal structure in electrical contact with the III-nitride gate structure, and a dielectric layer overlying at least a portion of the gate metal structure. A top surface of the dielectric layer is substantially co-planar with a top surface of the source region.

PATENT NUMBER: 8836071ISSUED

ABSTRACT
A method of fabricating a Schottky diode using gallium nitride (GaN) materials includes providing an n-type GaN substrate having a first surface and a second surface. The second surface opposes the first surface. The method also includes forming an ohmic metal contact electrically coupled to the first surface of the n-type GaN substrate and forming an n-type GaN epitaxial layer coupled to the second surface of the n-type GaN substrate. The method further includes forming an n-type aluminum gallium nitride (AlGaN) surface layer coupled to the n-type GaN epitaxial layer and forming a Schottky contact electrically coupled to the n-type AlGaN surface layer.

PATENT NUMBER: 8829574ISSUED

ABSTRACT
A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.

PATENT NUMBER: 8823140ISSUED

ABSTRACT
An embodiment of a semiconductor device includes a III-nitride base structure of a first conductivity type, and a III-nitride emitter structure of a second conductivity type having a first surface and a second surface. The second surface is substantially opposite the first surface. The first surface of the III-nitride emitter structure is coupled to a surface of the III-nitride base structure. The semiconductor also includes a first dielectric layer coupled to the second surface of the III-nitride emitter structure, and a spacer coupled to a sidewall of the III-nitride emitter structure and the surface of the III-nitride base structure. The semiconductor also includes a base contact structure with a III-nitride material coupled to the spacer, the surface of the III-nitride base structure, and the first dielectric layer, such that the first dielectric layer and the spacer are disposed between the base contact structure and the III-nitride emitter structure.

PATENT NUMBER: 8822311ISSUED

ABSTRACT
A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material. The implanted region of the first III-nitride epitaxial material has a reduced electrical conductivity in relation to portions of the first III-nitride epitaxial material adjacent to the implanted region.

PATENT NUMBER: 8785975ISSUED

ABSTRACT
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.

PATENT NUMBER: 8778788ISSUED

ABSTRACT
A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial structure including a first III-nitride epitaxial layer coupled to the first side of the III-nitride substrate and a plurality of III-nitride regions of a second conductivity type. The plurality of III-nitride regions have at least one III-nitride epitaxial region of the first conductivity type between each of the plurality of III-nitride regions. The semiconductor structure further includes a first metallic structure electrically coupled to one or more of the plurality of III-nitride regions and the at least one III-nitride epitaxial region. A Schottky contact is created between the first metallic structure and the at least one III-nitride epitaxial region.

PATENT NUMBER: 8749015ISSUED

ABSTRACT
A method for fabricating an edge termination structure includes providing a substrate having a first surface and a second surface and a first conductivity type, forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate, and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The method also includes implanting ions into a first region of the second GaN epitaxial layer to electrically isolate a second region of the second GaN epitaxial layer from a third region of the second GaN epitaxial layer. The method further includes forming an active device coupled to the second region of the second GaN epitaxial layer and forming the edge termination structure coupled to the third region of the second GaN epitaxial layer.

PATENT NUMBER: 8741707ISSUED

ABSTRACT
A method for fabricating an edge termination, which can be used in conjunction with GaN-based materials, includes providing a substrate of a first conductivity type. The substrate has a first surface and a second surface. The method also includes forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The substrate, the first GaN epitaxial layer and the second GaN epitaxial layer can be referred to as an epitaxial structure.

PATENT NUMBER: 8716716ISSUED

ABSTRACT
A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.

PATENT NUMBER: 8716078ISSUED

ABSTRACT
A semiconductor device includes a III-nitride substrate and a first III-nitride epitaxial layer coupled to the III-nitride substrate and comprising a drift region, a channel region, and an extension region. The channel region is separated from the III-nitride substrate by the drift region. The channel region is characterized by a first width. The extension region is separated from the drift region by the channel region. The extension region is characterized by a second width less than the first width. The semiconductor device also includes a second III-nitride epitaxial layer coupled to a top surface of the extension region, a III-nitride gate structure coupled to a sidewall of the channel region and laterally self-aligned with respect to the extension region, and a gate metal structure in electrical contact with the III-nitride gate structure and laterally self-aligned with respect to the extension region.

PATENT NUMBER: 8698164ISSUED

ABSTRACT
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.

PATENT NUMBER: 8643134ISSUED

ABSTRACT
A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.

PATENT NUMBER: 8592298ISSUED

ABSTRACT
A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.

PATENT NUMBER: 8569153ISSUED

ABSTRACT
A method of growing an n-type III-nitride-based epitaxial layer includes providing a substrate in an epitaxial growth reactor, forming a masking material coupled to a portion of a surface of the substrate, and flowing a first gas into the epitaxial growth reactor. The first gas includes a group III element and carbon. The method further comprises flowing a second gas into the epitaxial growth reactor. The second gas includes a group V element, and a molar ratio of the group V element to the group III element is at least 5,000. The method also includes growing the n-type III-nitride-based epitaxial layer.

PATENT NUMBER: 8558242ISSUED

ABSTRACT
A semiconductor structure includes a III-nitride substrate having a top surface and an opposing bottom surface and a first III-nitride layer of a first conductivity type coupled to the top surface of the III-nitride substrate. The semiconductor structure also includes a second III-nitride layer of a second conductivity type coupled to the first III-nitride layer along a vertical direction and a third III-nitride layer of a third conductivity type coupled to the second III-nitride layer along the vertical direction. The semiconductor structure further includes a first trench extending through a portion of the third III-nitride layer to the first III-nitride layer, a second trench extending through another portion of the third III-nitride layer to the second III-nitride layer, and a first metal layer coupled to the second and the third III-nitride layers.

PATENT NUMBER: 8502234ISSUED

ABSTRACT
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.

PATENT NUMBER: 20150206768ALLOWED & PENDING

ABSTRACT
A method of fabricating an electronic package includes providing a package comprising a leadframe and a plurality of pins and providing a gallium nitride (GaN) transistor comprising a drain contact, a source contact, and a gate contact. The method also includes joining the drain contact to the leadframe and providing a GaN diode comprising an anode contact and a cathode contact. The method further includes joining the anode contact to the leadframe.

PATENT NUMBER: 20150200268ALLOWED & PENDING

ABSTRACT
An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.

PATENT NUMBER: 20150200097ALLOWED & PENDING

ABSTRACT
A method of making an edge terminated semiconductor device includes providing a GaN substrate having a GaN epitaxial layer grown thereon and exposing a portion of the GaN epitaxial layer to ion implantation. The energy dose is selected to provide a resistivity that is at least 90% of maximum achievable resistivity. The method also includes depositing a conductive layer over a portion of the implanted region.

PATENT NUMBER: 20150188521ALLOWED & PENDING

ABSTRACT
An electronic circuit comprising a driver and a main transistor are provided. The driver may include a bias voltage generator, a supplementary transistor, and an output driver. The bias voltage generator may be configured to receive a voltage input and generate a biased voltage output based on the voltage input. The supplementary transistor may have a gate coupled to the biased voltage output of the bias voltage generator, and a source of the supplementary transistor providing a current to the bias voltage generator. The output driver may be configured to receive the biased voltage output from the bias voltage generator and the voltage input, receive the voltage input, and output a drive voltage. The main transistor of the electronic circuit may have a gate, a coupled to the drive voltage, and a drain coupled to a drain of the supplementary transistor.

PATENT NUMBER: 20150179772ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a III-nitride substrate and a drift region coupled to the III-nitride substrate along a growth direction. The semiconductor substrate also includes a channel region coupled to the drift region. The channel region is defined by a channel sidewall disposed substantially along the growth direction. The semiconductor substrate further includes a gate region disposed laterally with respect to the channel region.

PATENT NUMBER: 20150179733ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.

PATENT NUMBER: 20150155372ALLOWED & PENDING

ABSTRACT
A method of growing a III-nitride-based epitaxial structure is disclosed. The method includes forming a GaN-based drift layer coupled to the GaN-based substrate, where forming the GaN-based drift layer comprises doping the drift layer with indium to cause the indium concentration of the drift layer to be less than about 1.times.10.sup.16 cm.sup.-3 and to cause the carbon concentration of the drift layer to be less than about 1.times.10.sup.16 cm.sup.-3. The method also includes forming an n-type channel layer coupled to the GaN-based drift layer, forming an n-contact layer coupled to the GaN-based drift layer, and forming a second electrical contact electrically coupled to the n-contact layer.

PATENT NUMBER: 20150140746ALLOWED & PENDING

ABSTRACT
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.

PATENT NUMBER: 20150137140ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.

PATENT NUMBER: 20150137134ALLOWED & PENDING

ABSTRACT
An electronic package includes a leadframe and a plurality of pins. The electronic package also includes a first gallium nitride (GaN) transistor comprising a source, gate, and drain and a second GaN transistor comprising a source, gate, and drain. The source of the first GaN transistor is electrically connected to the leadframe and the drain of the second GaN transistor is electrically connected to the leadframe. The electronic package further includes a first GaN diode comprising an anode and cathode and a second GaN diode comprising an anode and cathode. The anode of the first GaN diode is electrically connected to the leadframe and the anode of the second GaN diode is electrically connected to the leadframe.

PATENT NUMBER: 20150132900ALLOWED & PENDING

ABSTRACT
An embodiment of a vertical power device includes a III-nitride substrate, a drift region coupled to the III-nitride substrate and comprising a III-nitride material of a first conductivity type, and a channel region coupled to the drift region and comprising a III-nitride material of the first conductivity type. The vertical power device also includes a source region coupled to the channel region and comprising a III-nitride material of the first conductivity type, and a gate region coupled to the channel region. The gate region includes a III-nitride material of a second conductivity type. The vertical power device further includes a source-coupled region coupled to the drift region and electrically connected with the source region. The source-coupled region includes a III-nitride material of the second conductivity type.

PATENT NUMBER: 20150132899ALLOWED & PENDING

ABSTRACT
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction, and the channel region extends along at least a portion of the second surface of the gate region.

PATENT NUMBER: 20150129886ALLOWED & PENDING

ABSTRACT
A method for fabricating a lateral gallium nitride (GaN) field-effect transistor includes forming a first and second GaN layer coupled to a substrate, removing a first portion of the second GaN layer to expose a portion of the first GaN layer, and forming a third GaN layer coupled to the second GaN layer and the exposed portion of the first GaN layer. The method also includes removing a portion of the third GaN layer to expose a portion of the second GaN layer, forming a source structure coupled to the third GaN layer. A first portion of the second GaN layer is disposed between the source structure and the second GaN layer. A drain structure is formed that is coupled to the third GaN layer or alternatively to the substrate. The method also includes forming a gate structure coupled to the third GaN layer such that a second portion of the third GaN layer is disposed between the gate structure and the second GaN layer.

PATENT NUMBER: 20150123138ALLOWED & PENDING

ABSTRACT
An electronic device includes a III-V substrate having a hexagonal crystal structure and a normal to a growth surface characterized by a misorientation from the direction of between 0.15.degree. and 0.65.degree.. The electronic device also includes a first epitaxial layer coupled to the III-V substrate and a second epitaxial layer coupled to the first epitaxial layer. The electronic device further includes a first contact in electrical contact with the substrate and a second contact in electrical contact with the second epitaxial layer.

PATENT NUMBER: 20150104912ALLOWED & PENDING

ABSTRACT
A method for fabricating a vertical GaN power device includes providing a first GaN material having a first conductivity type and forming a second GaN material having a second conductivity type and coupled to the first GaN material to create a junction. The method further includes implanting ions through the second GaN material and into a first portion of the first GaN material to increase a doping concentration of the first conductivity type. The first portion of the junction is characterized by a reduced breakdown voltage relative to a breakdown voltage of a second portion of the junction.

PATENT NUMBER: 20150102360ALLOWED & PENDING

ABSTRACT
An embodiment of a semiconductor device includes a gallium nitride (GaN) substrate having a first surface and a second surface. The second surface is substantially opposite the first surface, at least one device layer is coupled to the first surface, and a backside metal is coupled to the second surface. A top metal stack is coupled to the at least one device layer. The top metal stack includes a contact metal coupled to a surface of the at least one device layer, a protection layer coupled to the contact metal, a diffusion barrier coupled to the protection layer, and a pad metal coupled to the diffusion barrier. The semiconductor device is configured to conduct electricity between the top metal stack and the backside metal.

PATENT NUMBER: 20150017792ALLOWED & PENDING

ABSTRACT
A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.

PATENT NUMBER: 20140374769ALLOWED & PENDING

ABSTRACT
A Schottky diode and method of fabricating the Schottky diode using gallium nitride (GaN) materials is disclosed. The method includes providing an n-type GaN substrate having first and second opposing surfaces. The method also includes forming an ohmic metal contact electrically coupled to the first surface, forming an n-type GaN epitaxial layer coupled to the second surface, and forming an n-type aluminum gallium nitride (AlGaN) surface layer coupled to the n-type GaN epitaxial layer. The AlGaN surface layer has a thickness which is less than a critical thickness, and the critical thickness is determined based on an aluminum mole fraction of the AlGaN surface layer. The method also includes forming a Schottky contact electrically coupled to the n-type AlGaN surface layer, where, during operation, an interface between the n-type GaN epitaxial layer and the n-type AlGaN surface layer is substantially free from a two-dimensional electron gas.

PATENT NUMBER: 20140370669ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.

PATENT NUMBER: 20140346527ALLOWED & PENDING

ABSTRACT
A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material. The implanted region of the first III-nitride epitaxial material has a reduced electrical conductivity in relation to portions of the first III-nitride epitaxial material adjacent to the implanted region

PATENT NUMBER: 20140346522ALLOWED & PENDING

ABSTRACT
An electronic package includes a leadframe and a plurality of pins. The electronic package also includes a first gallium nitride (GaN) transistor comprising a source, gate, and drain and a second GaN transistor comprising a source, gate, and drain. The source of the first GaN transistor is electrically connected to the leadframe and the drain of the second GaN transistor is electrically connected to the leadframe. The electronic package further includes a first GaN diode comprising an anode and cathode and a second GaN diode comprising an anode and cathode. The anode of the first GaN diode is electrically connected to the leadframe and the cathode of the second GaN diode is electrically connected to the leadframe.

PATENT NUMBER: 20140312355ALLOWED & PENDING

ABSTRACT
A method for fabricating a merged p-i-n Schottky (MPS) diode in gallium nitride (GaN) based materials includes providing an n-type GaN-based substrate having a first surface and a second surface. The method also includes forming an n-type GaN-based epitaxial layer coupled to the first surface of the n-type GaN-based substrate, and forming a p-type GaN-based epitaxial layer coupled to the n-type GaN-based epitaxial layer. The method further includes removing portions of the p-type GaN-based epitaxial layer to form a plurality of dopant sources, and regrowing a GaN-based epitaxial layer including n-type material in regions overlying portions of the n-type GaN-based epitaxial layer, and p-type material in regions overlying the plurality of dopant sources. The method also includes forming a first metallic structure electrically coupled to the regrown GaN-based epitaxial layer.

PATENT NUMBER: 20140295652ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.

PATENT NUMBER: 20140291691ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.

PATENT NUMBER: 20140287570ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial structure including a first III-nitride epitaxial layer coupled to the first side of the III-nitride substrate and a plurality of III-nitride regions of a second conductivity type. The plurality of III-nitride regions have at least one III-nitride epitaxial region of the first conductivity type between each of the plurality of III-nitride regions. The semiconductor structure further includes a first metallic structure electrically coupled to one or more of the plurality of III-nitride regions and the at least one III-nitride epitaxial region. A Schottky contact is created between the first metallic structure and the at least one III-nitride epitaxial region.

PATENT NUMBER: 20140235030ALLOWED & PENDING

ABSTRACT
A method for fabricating an edge termination structure includes providing a substrate having a first surface and a second surface and a first conductivity type, forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate, and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The method also includes implanting ions into a first region of the second GaN epitaxial layer to electrically isolate a second region of the second GaN epitaxial layer from a third region of the second GaN epitaxial layer. The method further includes forming an active device coupled to the second region of the second GaN epitaxial layer and forming the edge termination structure coupled to the third region of the second GaN epitaxial layer.

PATENT NUMBER: 20140206179ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.

PATENT NUMBER: 20140203328ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate and a first III-nitride epitaxial layer coupled to the III-nitride substrate and comprising a drift region, a channel region, and an extension region. The channel region is separated from the III-nitride substrate by the drift region. The channel region is characterized by a first width. The extension region is separated from the drift region by the channel region. The extension region is characterized by a second width less than the first width. The semiconductor device also includes a second III-nitride epitaxial layer coupled to a top surface of the extension region, a III-nitride gate structure coupled to a sidewall of the channel region and laterally self-aligned with respect to the extension region, and a gate metal structure in electrical contact with the III-nitride gate structure and laterally self-aligned with respect to the extension region.

PATENT NUMBER: 20140191242ALLOWED & PENDING

ABSTRACT
A vertical JFET includes a GaN substrate comprising a drain of the JFET and a plurality of patterned epitaxial layers coupled to the GaN substrate. A distal epitaxial layer comprises a first part of a source channel and adjacent patterned epitaxial layers are separated by a gap having a predetermined distance. The vertical JFET also includes a plurality of regrown epitaxial layers coupled to the distal epitaxial layer and disposed in at least a portion of the gap. A proximal regrown epitaxial layer comprises a second part of the source channel. The vertical JFET further includes a source contact passing through portions of a distal regrown epitaxial layer and in electrical contact with the source channel, a gate contact in electrical contact with a distal regrown epitaxial layer, and a drain contact in electrical contact with the GaN substrate.

PATENT NUMBER: 20140191241ALLOWED & PENDING

ABSTRACT
An array of GaN-based vertical JFETs includes a GaN substrate comprising a drain of one or more of the JFETs and one or more epitaxial layers coupled to the GaN substrate. The array also includes a plurality of hexagonal cells coupled to the one or more epitaxial layers and extending in a direction normal to the GaN substrate. Sidewalls of the plurality of hexagonal cells are substantially aligned with respect to crystal planes of the GaN substrate. The array further includes a plurality of channel regions, each having a portion adjacent a sidewall of the plurality of hexagonal cells, a plurality of gate regions of one or more of the JFETs, each electrically coupled to one or more of the plurality of channel regions, and a plurality of source regions of one or more of the JFETs electrically coupled to one or more of the plurality of channel regions.

PATENT NUMBER: 20140183543ALLOWED & PENDING

ABSTRACT
An electronic package includes a leadframe, a plurality of pins, a gallium-nitride (GaN) transistor, and a GaN diode. The GaN transistor includes a drain region, a drift region, a source region, and a gate region; the drain region includes a GaN substrate and a drain contact, the drift region includes a first GaN epitaxial layer coupled to the GaN substrate, the source region includes a source contact and is separated from the GaN substrate by the drift region, and the gate region includes a second GaN epitaxial layer and a gate contact. The GaN diode includes an anode region and a cathode region, the cathode region including the GaN substrate and a cathode contact, and the anode region including a third GaN epitaxial layer coupled to the GaN substrate and an anode contact. The drain contact and the anode contact are electrically connected to the leadframe.

PATENT NUMBER: 20140175450ALLOWED & PENDING

ABSTRACT
A method for fabricating a vertical GaN power device includes providing a first GaN material having a first conductivity type and forming a second GaN material having a second conductivity type and coupled to the first GaN material to create a junction. The method further includes implanting ions through the second GaN material and into a first portion of the first GaN material to increase a doping concentration of the first conductivity type. The first portion of the junction is characterized by a reduced breakdown voltage relative to a breakdown voltage of a second portion of the junction.

PATENT NUMBER: 20140159051ALLOWED & PENDING

ABSTRACT
An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.

PATENT NUMBER: 20140145201ALLOWED & PENDING

ABSTRACT
A semiconductor structure includes a III-nitride substrate and a first III-nitride epitaxial layer of a first conductivity type coupled to the III-nitride substrate. The semiconductor structure also includes a first III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial layer and a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure. The semiconductor structure further includes a second III-nitride epitaxial layer coupled to the first III-nitride epitaxial structure. The second III-nitride epitaxial layer is of a second conductivity type and is not electrically connected to the second III-nitride epitaxial structure.

PATENT NUMBER: 20140131837ALLOWED & PENDING

ABSTRACT
An embodiment of a semiconductor device includes a III-nitride base structure of a first conductivity type, and a III-nitride emitter structure of a second conductivity type having a first surface and a second surface. The second surface is substantially opposite the first surface. The first surface of the III-nitride emitter structure is coupled to a surface of the III-nitride base structure. The semiconductor also includes a first dielectric layer coupled to the second surface of the III-nitride emitter structure, and a spacer coupled to a sidewall of the III-nitride emitter structure and the surface of the III-nitride base structure. The semiconductor also includes a base contact structure with a III-nitride material coupled to the spacer, the surface of the III-nitride base structure, and the first dielectric layer, such that the first dielectric layer and the spacer are disposed between the base contact structure and the III-nitride emitter structure.

PATENT NUMBER: 20140131775ALLOWED & PENDING

ABSTRACT
An embodiment of a vertical power device includes a III-nitride substrate, a drift region coupled to the III-nitride substrate and comprising a III-nitride material of a first conductivity type, and a channel region coupled to the drift region and comprising a III-nitride material of the first conductivity type. The vertical power device also includes a source region coupled to the channel region and comprising a III-nitride material of the first conductivity type, and a gate region coupled to the channel region. The gate region includes a III-nitride material of a second conductivity type. The vertical power device further includes a source-coupled region coupled to the drift region and electrically connected with the source region. The source-coupled region includes a III-nitride material of the second conductivity type.

PATENT NUMBER: 20140131721ALLOWED & PENDING

ABSTRACT
A gallium nitride (GaN)-based junction field-effect transistor (JFET) can include a GaN drain region having a top surface extending in a lateral dimension, a source region, and a GaN channel region of a first conductivity type coupled between the source region and the GaN drain region and operable to conduct electrical current between the source region and the GaN drain region. The JFET can also include a blocking layer disposed between the source region and the GaN drain region such that the GaN channel region is operable to conduct the electrical current substantially along the lateral dimension in a laterally-conductive region of the GaN channel region, and a GaN gate region of a second conductivity type coupled to the GaN channel region such that the laterally-conductive region of the GaN channel region is disposed between at least a portion of the blocking layer and the GaN gate region.

PATENT NUMBER: 20140116328ALLOWED & PENDING

ABSTRACT
A method of growing an n-type III-nitride-based epitaxial layer includes providing a substrate in an epitaxial growth reactor, forming a masking material coupled to a portion of a surface of the substrate, and flowing a first gas into the epitaxial growth reactor. The first gas includes a group III element and carbon. The method further comprises flowing a second gas into the epitaxial growth reactor. The second gas includes a group V element, and a molar ratio of the group V element to the group III element is at least 5,000. The method also includes growing the n-type III-nitride-based epitaxial layer.

PATENT NUMBER: 20140070226ALLOWED & PENDING

ABSTRACT
An embodiment of a semiconductor device includes a gallium nitride (GaN) substrate having a first surface and a second surface. The second surface is substantially opposite the first surface, at least one device layer is coupled to the first surface, and a backside metal is coupled to the second surface. A top metal stack is coupled to the at least one device layer. The top metal stack includes a contact metal coupled to a surface of the at least one device layer, a protection layer coupled to the contact metal, a diffusion barrier coupled to the protection layer, and a pad metal coupled to the diffusion barrier. The semiconductor device is configured to conduct electricity between the top metal stack and the backside metal.

PATENT NUMBER: 20140051236ALLOWED & PENDING

ABSTRACT
A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.

PATENT NUMBER: 20140048903ALLOWED & PENDING

ABSTRACT
A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing an n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming one or more p-type regions in the n-type GaN epitaxial layer by using a first ion implantation. At least one of the one or more p-type regions includes an edge termination structure.

PATENT NUMBER: 20140048902ALLOWED & PENDING

ABSTRACT
An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.

PATENT NUMBER: 20140045306ALLOWED & PENDING

ABSTRACT
A method of regrowing material includes providing a III-nitride structure including a masking layer and patterning the masking layer to form an etch mask. The method also includes removing, using an in-situ etch, a portion of the III-nitride structure to expose a regrowth region and regrowing a III-nitride material in the regrowth region.

PATENT NUMBER: 20140042447ALLOWED & PENDING

ABSTRACT
A method for fabricating an electronic device includes providing an engineered substrate structure comprising a III-nitride seed layer, forming GaN-based functional layers coupled to the III-nitride seed layer, and forming a first electrode structure electrically coupled to at least a portion of the GaN-based functional layers. The method also includes joining a carrier substrate opposing the GaN-based functional layers and removing at least a portion of the engineered substrate structure. The method further includes forming a second electrode structure electrically coupled to at least another portion of the GaN-based functional layers and removing the carrier substrate.

PATENT NUMBER: 20140021479ALLOWED & PENDING

ABSTRACT
A method for fabricating a vertical gallium nitride (GaN) power device can include providing a GaN substrate with a top surface and a bottom surface, forming a device layer coupled to the top surface of the GaN substrate, and forming a metal contact on a top surface of the vertical GaN power device. The method can further include forming a backside metal by forming an adhesion layer coupled to the bottom surface of the GaN substrate, forming a diffusion barrier coupled to the adhesion layer, and forming a protection layer coupled to the diffusion barrier. The vertical GaN power device can be configured to conduct electricity between the metal contact and the backside metal.

PATENT NUMBER: 20130341677ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.

PATENT NUMBER: 20130299882ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate and a channel structure coupled to the III-nitride substrate. The channel structure comprises a first III-nitride epitaxial material and is characterized by one or more channel sidewalls. The semiconductor device also includes a source region coupled to the channel structure. The source region comprises a second III-nitride epitaxial material. The semiconductor device further includes a III-nitride gate structure coupled to the one or more channel sidewalls, a gate metal structure in electrical contact with the III-nitride gate structure, and a dielectric layer overlying at least a portion of the gate metal structure. A top surface of the dielectric layer is substantially co-planar with a top surface of the source region.

PATENT NUMBER: 20130299873ALLOWED & PENDING

ABSTRACT
A semiconductor device includes a III-nitride substrate and a first III-nitride epitaxial layer coupled to the III-nitride substrate and comprising a drift region, a channel region, and an extension region. The channel region is separated from the III-nitride substrate by the drift region. The channel region is characterized by a first width. The extension region is separated from the drift region by the channel region. The extension region is characterized by a second width less than the first width. The semiconductor device also includes a second III-nitride epitaxial layer coupled to a top surface of the extension region, a III-nitride gate structure coupled to a sidewall of the channel region and laterally self-aligned with respect to the extension region, and a gate metal structure in electrical contact with the III-nitride gate structure and laterally self-aligned with respect to the extension region.

PATENT NUMBER: 20130292686ALLOWED & PENDING

ABSTRACT
A vertical JFET includes a III-nitride substrate and a III-nitride epitaxial layer of a first conductivity type coupled to the III-nitride substrate. The first III-nitride epitaxial layer has a first dopant concentration. The vertical JFET also includes a III-nitride epitaxial structure coupled to the first III-nitride epitaxial layer. The III-nitride epitaxial structure includes a set of channels of the first conductivity type and having a second dopant concentration, a set of sources of the first conductivity type, having a third dopant concentration greater than the first dopant concentration, and each characterized by a contact surface, and a set of regrown gates interspersed between the set of channels. An upper surface of the set of regrown gates is substantially coplanar with the contact surfaces of the set of sources.

Systems

PATENT NUMBER: 9089083ISSUED

ABSTRACT
An electrical circuit includes an input for an AC input voltage coupled to a first inductive element with first and second outputs coupled to respective first and second nodes, and a four-quadrant (4-Q) switch coupled between the first and second nodes. A capacitor is coupled between the first node and a third node, a second inductive element is coupled between the third node and the second node, and a first bidirectional device and a first diode are coupled in series between a positive output node and a negative output node. A first output of the second inductive element is coupled between the first bidirectional device and the first diode. A second bidirectional device and a second diode are coupled in series between the positive output node and the negative output node. A second output of the second inductive element is coupled between the second bidirectional device and the second diode.

PATENT NUMBER: D728,475ISSUED

ABSTRACT

PATENT NUMBER: 8947154ISSUED

ABSTRACT
An electronic circuit comprising a driver and a main transistor are provided. The driver may include a bias voltage generator, a supplementary transistor, and an output driver. The bias voltage generator may be configured to receive a voltage input and generate a biased voltage output based on the voltage input. The supplementary transistor may have a gate coupled to the biased voltage output of the bias voltage generator, and a source of the supplementary transistor providing a current to the bias voltage generator. The output driver may be configured to receive the biased voltage output from the bias voltage generator and the voltage input, receive the voltage input, and output a drive voltage. The main transistor of the electronic circuit may have a gate, a coupled to the drive voltage, and a drain coupled to a drain of the supplementary transistor.

PATENT NUMBER: 20140153304ALLOWED & PENDING

ABSTRACT
An electrical circuit includes an input for an AC input voltage coupled to a first inductive element with first and second outputs coupled to respective first and second nodes, and a four-quadrant (4-Q) switch coupled between the first and second nodes. A capacitor is coupled between the first node and a third node, a second inductive element is coupled between the third node and the second node, and a first bidirectional device and a first diode are coupled in series between a positive output node and a negative output node. A first output of the second inductive element is coupled between the first bidirectional device and the first diode. A second bidirectional device and a second diode are coupled in series between the positive output node and the negative output node. A second output of the second inductive element is coupled between the second bidirectional device and the second diode.

PATENT NUMBER: 20140185327ALLOWED & PENDING

ABSTRACT
A power supply is provided, the power supply including a filter stage configured to receive an AC input voltage, a bridge circuit configured to rectify the filtered AC input voltage, an AC/DC converter, and a DC/DC converter. The AC/DC converter includes a primary transistor and an auxiliary circuit including an auxiliary transistor and configured to convert the rectified AC input voltage to a first DC output voltage, wherein the primary transistor and the auxiliary transistor are at least one of gallium nitride (GaN) transistors or silicon carbide (SiC) transistors. The DC/DC converter is configured to convert the first DC output voltage to a second DC output voltage.

PATENT NUMBER: 20150155775ALLOWED & PENDING

ABSTRACT
An electrical adapter can include a rectifying circuit configured to receive an AC power input, a power factor corrector (PFC) circuit coupled with an output of the rectifying circuit, and a capacitive component coupled with an output of the PFC circuit. The electrical adapter can further include a DC-DC converter circuit coupled with an output of the capacitive component and configured to provide a power output of the electrical adapter, and an impedance-measuring circuit coupled with the power output and configured to measure impedance of a cable connected to the power output. The DC-DC converter circuit can be configured to adjust power of the power output based on the measured impedance.

PATENT NUMBER: 20150188521ALLOWED & PENDING

ABSTRACT
An electronic circuit comprising a driver and a main transistor are provided. The driver may include a bias voltage generator, a supplementary transistor, and an output driver. The bias voltage generator may be configured to receive a voltage input and generate a biased voltage output based on the voltage input. The supplementary transistor may have a gate coupled to the biased voltage output of the bias voltage generator, and a source of the supplementary transistor providing a current to the bias voltage generator. The output driver may be configured to receive the biased voltage output from the bias voltage generator and the voltage input, receive the voltage input, and output a drive voltage. The main transistor of the electronic circuit may have a gate, a coupled to the drive voltage, and a drain coupled to a drain of the supplementary transistor.